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Abstract

The chemical master equation is solved by a hybrid method coupling a macroscopic, deterministic description with a
mesoscopic, stochastic model. The molecular species are divided into one subset where the expected values of the number
of molecules are computed and one subset with species with a stochastic variation in the number of molecules. The mac-
roscopic equations resemble the reaction rate equations and the probability distribution for the stochastic variables satisfy
a master equation. The probability distribution is obtained by the Stochastic Simulation Algorithm due to Gillespie. The
equations are coupled via a summation over the mesoscale variables. This summation is approximated by Quasi-Monte
Carlo methods. The error in the approximations is analyzed. The hybrid method is applied to three chemical systems from
molecular cell biology.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a well stirred chemical system, the chemical reactions are often modeled by the reaction rate equations.
These equations form a system of nonlinear, coupled ordinary differential equations (ODEs). Such a macro-
scopic model provides a good description of the time evolution for the concentrations of the chemical species
of the system in many cases e.g. when the number of molecules of each kind is large and in the absence of
critical phenomena. On the other hand, the species with low copy number are not well described by a deter-
ministic and macroscopic model since they are subject to random fluctuations which cannot be neglected and
in many cases have a great impact on the behavior of the system. In a biological cell, the underlying assump-
tions for the reaction rate equations are often violated [1,9,31,34,37,40,42,43]. At least some species are usually
present in low copy numbers. For example, mRNA usually exists in one or a few copies, while transcription
factors may be present in the range from ten to hundreds of molecules. Yet other components could be active
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in large numbers and approach macroscopic values. Thus, a realistic model must take the inherent random-
ness into account and therefore need to be of stochastic nature. A disadvantage with stochastic models is the
increase in computational complexity compared to the reaction rate equations. Another source of computa-
tional difficulties is the different scales both in time and in reaction rates [4,8,11,17,20,25,35,36].

One way to model coupled chemical reactions stochastically at a mesoscopic level is to the use the Stochas-
tic Simulation Algorithm (SSA) proposed by Gillespie [16]. This Monte Carlo algorithm yields a correct real-
ization of the process, but the computing time required to approximate the probability distribution of the
species in the system is often dictated by the reactions involving the molecules with the largest copy numbers
or the fastest reaction rates. They may well be the components where the stochastic description is the least
important. The convergence rate is also slow for this method and it can be computationally cumbersome
to obtain detailed information of the probability distributions when the number of different reacting molecules
is large.

The underlying stochastic process is often assumed to be memory lacking or Markovian. Then the time evo-
lution of the probability distribution is described by a difference–differential equation, the chemical master
equation [15,24]. One molecular species corresponds to one spatial dimension in the equation. Analytical solu-
tions of this equation are known only for very simple chemical systems and numerical solution is necessary for
realistic systems. Direct numerical solution of the master equation suffers from the curse of dimensionality as
the computational work and storage requirements grow exponentially with the number of dimensions or react-
ing species. Consequently, this often limits the size of the models to four or maybe five dimensions.

Different ways to mitigate or avoid the exponential growth have been proposed, either by approximations
of the master equation [41] or dimension reduction by introducing assumptions about the behavior of different
components [43]. In the first case, the master equation is approximated by the Fokker–Planck equation, a par-
tial differential equation derived from a truncated Taylor expansion of the master equation [15,24]. The dis-
cretized Fokker–Planck equation can be solved with fewer variables compared to the master equation, but this
approach is still limited by an unfavorable rise in computational time with increasing number of species. For
certain low-dimensional problems though, solution of the Fokker–Planck is orders of magnitude faster than
the SSA [41]. The second approach relies on some prior knowledge of the system in order to reduce the dimen-
sion of the problem. While this can result in a considerable reduction of the complexity, a profound knowledge
of the biological system is required to introduce some simplifying assumptions. For moderate numbers of
reacting species, model reduction with Krylov spaces [2,30] and sparse grid methods [21] are alternatives.

With SSA [16] the work grows linearly with the number of species but for systems with different time scales
the method is slow owing to the explicit time stepping. By allowing more reactions to take place in a time step
or assuming approximate relations between the species, longer time steps are possible. Either the species are
split into a slow and a fast set [11,36] or the reactions are partitioned in this way [7,8,20,38]. In [4,5], both
reactions and species are partitioned. Then a quasi-steady-state assumption [36] or a partial equilibrium
assumption [4,39] is made allowing a simplified treatment of the fast variables.

There are efficient numerical methods to solve ODEs and the fast components are modeled by deterministic
equations and other components are treated with a stochastic model in [20,25]. The assumption in common in
these papers is that there is a separation in the time scales.

A partitioning of the chemical compounds into a subset of variables that can be treated as normally dis-
tributed with a small variance and a subset of variables that need a stochastic treatment is suggested in
[28]. The scales of the variances of the stochastic variables are assumed here to be separated into two subsets.
Equations are derived for the expected values of the first subset assuming that the quotient between the stan-
dard deviation and the expected value is small. The equations can be solved given the probability density func-
tion (PDF) of the stochastic variables. This PDF satisfies a Fokker–Planck equation and is solved by a finite
volume scheme in [13] but the dimension of the stochastic problem is then restricted to, say, five. Bounds are
derived on the approximations due to the small variances.

Here, we apply SSA to the stochastic part and compute the coupling to the deterministic part using Monte
Carlo and Quasi-Monte Carlo summation [3,18]. The equations for the expected values are integrated in time
by an unconditionally stable, implicit method. Hence, if the species in the fast reactions coincide with the spe-
cies with small variance and are treated macroscopically, then the small time steps in SSA are avoided as in
[20,25]. On the other hand, if some of the fast variables have large variances and are in the stochastic regime,
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then their trajectories can be simulated with the more efficient versions of SSA e.g. in [4,8,39]. Our method can
be regarded either as a means to introduce stochasticity in some components in the reaction rate equations or
as a way of improving the efficiency of SSA by reducing the number of species in its system state vector. In this
way, the quality of large macroscopic models can be improved by allowing a subset of the variables to be sto-
chastic or large stochastic models can be reduced to permit shorter simulation times.

The partitioning of the variables can be based on one of the following possibilities:

1. Species with large copy numbers L have a standard deviation of order L1/2 and their quotient L�1/2 is small
for large L [24, p. 248]. These species are candidates for a macroscopic treatment. An example where L is
large for some of the species is found e.g. in [7].

2. Estimation of the expected values and the covariances by solving the equations for them [10,24] or from
SSA with a few trajectories will tell which variables are amenable to macroscopic approximation. The equa-
tions for the first and second moments are a system of nonlinear ordinary differential equations and the
work grows as a polynomial of low order in the number of species. The cost of simulation of a small num-
ber of trajectories with SSA is negligible compared to simulation of the system with good accuracy.

3. Biological insight will provide hints how to partition the species. An example of a reduction of a system
using the quasi-steady-state assumption is found in [43].

Our method differs from previously published hybrid methods by assuming a separation in the variance of
the species, evaluation of the propensities for the macroscopic scale without ruining the complexity of the
algorithm, providing error estimates depending on parameters in the method, adaptive control of the errors
due to the time discretization, and by computing the PDFs with good numerical accuracy.

In the next section, the nonlinear system of differential equations for the expected values and the master
equation for the PDF of the stochastic variables are derived. The solution algorithm for the coupled system
is described in Section 3. The errors in the solution are discussed and the computational work is estimated in
Section 4. Three systems in molecular biology are simulated in Section 5 using our algorithm. In one example,
the behavior of the macroscopic model is sensitive to a parameter but addition of stochastic variables removes
this sensitivity. The splitting is based on criterion 3 above. In another example, the full SSA simulation is com-
pared to a mixed macroscopic–mesoscopic model where the mesoscpoic variables have estimated large vari-
ances compared to the expected values as in criterion 2. The difference in the probability distribution of
critical components is small while the savings in computational work are significant. Finally, conclusions
are drawn in the last section.

The notation in the paper is as follows. The ith element of a vector v is denoted by vi. If vi P 0 for all i, then
we write v P 0. The ‘p-norm of v of length N is kvkp ¼

PN
i¼1jvijp

� �1=p
. The set of integer numbers is written Z

and Zþ denotes the non-negative integer numbers. In the same manner, R denotes the real numbers and Rþ is
the non-negative real numbers.
2. The system of equations

Assume that we have a chemical system with N active molecular species Xi, i = 1, . . . ,N, and that xi denotes
the number of molecules of substrate Xi. The system has a state vector x 2 ZN

þ, and a reaction r in the system is
a transition from a state xr to x so that xr = x + nr with nr 2 ZN . Only a few components of nr are non-zero.
The probability of the reaction to occur per unit time is the non-negative propensity wr(xr, t). The change in
the state vector by a reaction r can now be written
xr ���!wrðxr ;tÞ
x; nr ¼ xr � x: ð1Þ
The PDF p(x, t) for the system to be in the state x at time t satisfies the chemical master equation [15,24].
With a splitting of nr into two parts so that
nr ¼ nþr þ n�r ; nþri ¼ maxðnri; 0Þ; n�ri ¼ minðnri; 0Þ;

the master equation for R reactions is
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opðx; tÞ
ot

¼
XR

r¼1
xþn�r P0

wrðxþ nr; tÞpðxþ nr; tÞ �
XR

r¼1
x�nþr P0

wrðx; tÞpðx; tÞ: ð2Þ
It follows from [14] that the total probability
P

x2ZN
þ
pðx; tÞ is constant in time.

In order to reduce the computational complexity of solving (2), x is split in [28] into two parts xT! (xT,yT)
with x 2 Zm

þ, y 2 Rn, and N = m + n. In the same manner, the transition vector nr is split nT
r ! ðmT

r ; n
T
r Þ for

reaction r. The dimensions of mr and nr are mr 2 Zm; nr 2 Zn. The corresponding stochastic variables are
Xi, i = 1, . . . ,m, and Yi, i = 1, . . . ,n. The assumption is that the stochastic variables Yi are mutually indepen-
dent, independent of Xi, and normally distributed with a small variance. Then the PDF of the full system
is written
pðx; y; tÞ ¼ cnp0ðx; tÞ exp �
Xn

j¼1

ðyj � /jðtÞÞ
2

2r2
j

 !
; ð3Þ
with the normalizing constant cn ¼ ð2pÞ�n=2Qn
j¼1r

�1
j . Equations will be derived for p0 and / 2 Rn such that p

approximately fulfills (2).
The marginal PDF of p in (3) satisfies
p0ðx; tÞ ¼
Z

pðx; y; tÞdy;
where the domain of the integral is Rn. The scaling of p0 is such that the total probability satisfies
X
x2Zm

þ

Z
pðx; y; tÞ ¼

X
x2Zm

þ

p0ðx; tÞ ¼ 1: ð4Þ
The expected value of Yk is
E½Y k� ¼
X
x2Zm

þ

Z
ykpðx; y; tÞdy ¼ /kðtÞ:
A differential–difference equation for p0 is derived in [28] assuming that rj 6 r and that r is small. Ignoring
terms proportional to r2 for a vanishing r, the equation is for R reactions
op0ðx; tÞ
ot

¼
XR

r¼1
xþm�r P0

wrðxþmr;/ðtÞ; tÞp0ðxþmr; tÞ �
XR

r¼1
x�mþr P0

wrðx;/ðtÞ; tÞp0ðx; tÞ: ð5Þ
This is a master equation for p0 with propensities depending on the expected values /. It follows from (5) that
the total marginal probability

P
x2Zm

þ
p0ðx; tÞ is constant (cf.(2)) as presupposed in (4).

The differential equation for /j, j = 1, . . . ,n, is for a single reaction, R = 1,
d/j

dt
¼
X
x2Zm

þ

Z
yj

op
ot

dy

¼
X

xþm�r P0

wrðxþmr;/ðtÞ; tÞp0ðxþmr; tÞð/j � nrjÞ �
X

x�mþr P0

wrðx;/ðtÞ; tÞp0ðx; tÞ/j

¼ /j

X
x2Zm

þ

op0ðx; tÞ
ot

� nrj

X
xþm�r P0

wrðxþmr;/ðtÞ; tÞp0ðxþmr; tÞ

¼ �nrj

X
xþm�r P0

wrðxþmr;/ðtÞ; tÞp0ðxþmr; tÞ; ð6Þ
by (2), (5), the conservation of the total marginal probability, and after ignoring small terms of Oðr2Þ, see [28].
The equation is simplified by removing the shift mr so that for R reactions



104 A. Hellander, P. Lötstedt / Journal of Computational Physics 227 (2007) 100–122
d/j

dt
¼ �

XR

r¼1

nrj

X
x2Zm

þ

wrðx;/ðtÞ; tÞp0ðx; tÞ; j ¼ 1; . . . ; n: ð7Þ
This system of differential–summation equations is equal to the reaction rate equations for the chemical sys-
tem when the distribution of all species is assumed to be normal with small variances.

Suppose that the mesoscopic X participates in only the first q reactions. Then mr = 0, r = q + 1, . . . ,R, and
the right hand side in (5) is reduced to
Xq

r¼1
xþm�r P0

wrðxþmr;/ðtÞ; tÞp0ðxþmr; tÞ �
Xq

r¼1
x�mþr P0

wrðx;/ðtÞ; tÞp0ðx; tÞ: ð8Þ
If q = 0, then op0/ot = 0 and p0(x, t) = p0(x, 0). The summation over x in (7) to obtain new propensities should
then be performed in a preparatory stage before the simulation starts.

Suppose that wr depends on x only in the j first reactions. Then the right hand side in (7) is
�
Xj

r¼1

nrj

X
x2Zm

þ

wrðx;/ðtÞ; tÞp0ðx; tÞ �
XR

r¼jþ1

nrj

X
x2Zm

þ

wrð/ðtÞ; tÞp0ðx; tÞ

¼ �
Xj

r¼1

nrj

X
x2Zm

þ

wrðx;/ðtÞ; tÞp0ðx; tÞ �
XR

r¼jþ1

nrjwrð/ðtÞ; tÞ: ð9Þ
If j = 0, then (7) are the reaction rate equations.
Two equations have been derived for p0 in (5) and for /j in (7). They are coupled via the expected values of

the propensity of each reaction in (7) and the expected values of the species in the propensities in (5). The
dimension of the stochastic problem has been reduced from N in (2) to m in (5). The cost for this reduction
is the increased number of dependent variables from 1 in (2) to n + 1 in (5) and (7) but the work grows at most
as a polynomial of low order in n solving (5) and (7) compared to an exponential growth in n = N when is (2)
solved.

3. Solution algorithm

The two systems of Eqs. (5) and (7) are solved numerically by a hybrid method where p0 in (5) is determined
by SSA and / in (7) is computed by a deterministic time stepping method.

3.1. Solution of the master equation

The SSA is applied to the chemical system defined by the master equation for p0 in (5) with the right hand
side (8). Trajectories of the system are simulated by updating the state vectors after each reaction in [16]. Then
the probability for the system to be in a state x at time tm is approximated by
p0ðx; tmÞ �
1

M

XM

j¼1

Wj; Wj ¼
1; xj ¼ x at tm;

0; otherwise;

�
ð10Þ
where M is the number of trajectories. The error in p0 due to the finite M is analyzed in Section 4.1.
The time evolution of the state is simulated by SSA in the following way. Let wm be the sum of the propen-

sities at tm so that
wm ¼
Xq

r¼1

wrðxm;/ðtmÞ; tmÞ; ð11Þ
cf. (8). In the direct method in [16], the next reaction after tm occurs at tm + Dsm, where the time increment Dsm is
exponentially distributed with mean 1/wm. If the partitioning of the species into x and y based on the variances
also is such that mr = 0 for the largest propensities wr, i.e. wr is small for r 6 q, then the expected value of Dsm is
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longer than the time step without partitioning, making SSA more efficient. The reaction number l with
1 6 l 6 R is chosen with probability wl(xm,/(tm), tm)/wm. With the stoichiometric matrix S defined by
S ¼ ðm1;m2; . . . ;mqÞ

and the unit vector ej 2 Rq with 1 in the jth position, the algorithm can be written as a stochastic process for
each trajectory
Xmþ1 ¼ Xm � Sel; tmþ1 ¼ tm þ Dsm: ð12Þ

The M state vectors Xm

j are stored in a trajectory matrix Tm such that Tm
j� ¼ ðXm

jÞ
T
; j ¼ 1; . . . ;M : The evalu-

ation of p0 in (10) for a given x is simplified if the rows of the matrix are sorted such that Tm
j1 increases for

increasing j. Then each interval in j with a constant Tm
j;l is sorted in ascending values of Tm

j;lþ1 for
l = 1, . . . ,M � 1. Identical rows are removed and the frequency of the row is saved. Then the row in Tm cor-
responding to a particular xk is easily found by binary search.

3.2. Solution of the differential–summation equation

The time derivative of the expected value in (7) is approximated by an implicit backward differentiation
formula of order 2 (BDF2) with variable time steps [19]. The increment between tk and tk+1 is denoted by
Dtk. Then the new value of /k+1 at tk+1 is computed by
ak
0/

kþ1 ¼ DtkFð/kþ1; tkþ1Þ � ak
1/

k � ak
2/

k�1;

xðx;/; tÞ ¼ �
XR

r¼1

nrwrðx;/; tÞ;

F jð/; tkþ1Þ ¼ �
X

xkþ12Zm
þ

xjðxkþ1;/; tkþ1Þp0ðxkþ1; tkþ1Þ; j ¼ 1; . . . ; n;

ak
0 ¼ ð1þ 2hkÞ=ð1þ hkÞ; an

1 ¼ �ð1þ hkÞ; ak
2 ¼ ðh

kÞ2=ð1þ hkÞ;
hk ¼ Dtk=Dtk�1;

ð13Þ
see [19,29]. A predicted value /̂kþ1 is computed with an explicit scheme using
âk
0/̂

kþ1 ¼ DtkFð/n; tnÞ � âk
1/

n � âk
2/

k�1;

â0
k ¼ 1=ð1þ hkÞ; â1

n ¼ hk � 1; â2
k ¼ �ðhkÞ2=ð1þ hkÞ;

ð14Þ
see [29]. The local temporal discretization error sk+1 in the difference approximation is proportional to (Dtk)2.
It is estimated by subtracting /̂kþ1 from /k+1 and dividing by Dtk. The next time step Dtk+1 is chosen after
comparing sk+1 with an error tolerance so that sn+2 is expected to satisfy the tolerance in the next step, see
Section 4.4.

The system of nonlinear equations in (13) satisfied by /k+1 is solved by Newton iterations. The initial
guess of /k+1 in the iterations is /̂kþ1. The elements of the Jacobian J in Newton’s method are then com-
puted as
J ij ¼
X
x2Zm

þ

xiðx;/þ ejD/j; tÞp0ðx; tÞ �
X
x2Zm

þ

xiðx;/; tÞp0ðx; tÞ

0@ 1A,D/j; i; j ¼ 1; . . . ; n; ð15Þ
i.e. using first order forward differences. The second summation over x needs to be evaluated only once with
this approximation of the derivatives. The number of participating species in every reaction is small implying
that J is rather sparse. This fact or if j is small in (9) makes the summation over x necessary only for a small
fraction of J. To take advantage of this, the system specification includes a list of the entries of the Jacobian
that needs to be computed. It also states if the element is dependent of the stochastic subset. If not, it can be
evaluated faster. The Jacobian is stored in factorized form and is recomputed only if the convergence of the
iterations is too slow.
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The stability of the integration in (13) is insensitive to the stiffness of x with respect to /. If possible, species
involved in reactions with propensities potentially contributing to the stiffness in the chemical system should
be treated deterministically in /.

The PDF p0 in (13) is calculated from (10) where all the trajectories have been advanced by (12) so that
tm+1
6 tk+1 but in the next SSA-step tm+2 > tk+1. The time steps in (12) and (13) are then synchronized so that

tm+1 = tk+1. All the M state vectors are constant in the interval [tm+1, tm+2). The value of /m in (11) at tm,
tk < tm 6 tk+1 is taken to be constant during the SSA steps and equals the value computed at tk. Extrapolation
of / to tm by
/ðtmÞ ¼ /ðtkÞ þ ðtm � tkÞð/ðtkÞ � /ðtk�1ÞÞ=ðtk � tk�1Þ

would improve the accuracy in the evaluation of wr in (5).

The time integration algorithm is summarized below.

1. Initialization: k = 0, m = 0, t0 = 0, generate M state vectors xj with a distribution given by the PDF p0(x, 0),
choose tk=1 = Dt0 and /j(0), j = 1, . . . ,n.

2. Advance the solution of the master Eq. (5) from the previous step tk with /(tk) until tm+1
6 tk+1 but

tm+2 > tk+1.
3. Solve (13) for the expected values /k+1 given p0(x, tm+1) determined by the M state vectors and (10) at tm+1.
4. Compute a new time step Dtk+1, tk+2 = tk+1 + Dtk+1, k :¼ k + 1, goto 2.

3.3. Approximation of the summation

The sums over x in (13) and (15) can be expensive to compute with exponential growth of the work in the
dimension of x even if the summation is restricted to a finite but still multidimensional domain in Zm

þ where
p0 6¼ 0. An alternative to summation over Zm

þ is to approximate the sums by a Monte Carlo (MC) or a Quasi-
Monte Carlo (QMC) approach.

Let X ¼ fx j 0 6 xi 6 xmaxg � Zm
þ for some xmax > 0 and assume that p0 = 0 outside X. Then in (13)
X

x2X
xðx;/; tÞp0ðx; tÞ ¼ E½xðX0;/; tÞ� �

f
K

XK

k¼1

xðxk;/; tÞp0ðxk; tÞ; ð16Þ
where X0 has the PDF p0. Let xj,min and xj,max 6 xmax be such that p0 = 0 if xj < xj,min or xj > xj,max for every j.
Then the factor in (16) is
f ¼
Yq
j¼1

ððxj;max þ 1Þ � xj;minÞ:
The K quadrature points xk are chosen by an MC or QMC method.
In a standard MC method, the sum in (16) is evaluated by generating pseudorandom vectors xk with xki

having uniform distribution in [xi,min,xi,min + 1, . . . ,xi,max]. The method converges slowly with the rate K�1/2

but independently of m and the regularity of xp0 [3,18].
An alternative is to use QMC methods where the sequence of quasi-random xk is generated deterministi-

cally. For xki, a quasi-random number n in [0, 1) is first generated according to some rule. Then it is scaled
so that xki is the integer part of xj,min + ((xj,max + 1) � xj,min)n. The convergence rate for smooth functions
is now of OðK�1ðlog KÞmÞ, which is an improvement compared to MC at least for a moderate m [3]. The sum-
mation errors in MC and QMC are estimated in Sections 4.2 and 4.3.

The sum (16) can be computed by an acceptance–rejection method [3,18] where a uniformly distributed trial
point xk is accepted in the sum with probability proportional to p0. Then the summands can be written
vkxj(xk,/, t) where the weights vk are one or zero depending on if the point is accepted or rejected. The con-
vergence rate of QMC depends on the smoothness of the summand and it may deteriorate because of the lack
of regularity in vkxj(xk,/, t). By introducing a linear approximation of vk close to the switch from 1 to 0, better
convergence is achieved in [3,32]. The convergence of the MC and QMC methods are compared using Faure
sequences [12] for QMC in a numerical example in Section 5.
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4. Analysis of the algorithm

The three major sources of approximation errors are the calculation of the PDF in Section 3.1, the evalu-
ation of the sums with MC or QMC in Section 3.3, and the time integration of the differential–summation
equation in Section 3.2. These errors are analyzed and computable estimates of them are proposed in this sec-
tion and the growth of the computational work is estimated when the number of trajectories M and the num-
ber of quadrature points K increase.
4.1. Error in the marginal PDF

The stochastic variable Wj at tm in (10) is 1 with probability p0(x, tm) in trajectory j of the chemical system.
Then according to the law of the large numbers [3,18], p0 is approximated at x = xk by
�pm
0k ¼

1

M

XM

j¼1

Wj:
In order to estimate the variance of the PDF at tm and xk the original trajectory matrix is subdivided in J parts
each one of size eM and with an approximation ~pm;j

0k . The variance r2
Mk in ~pm;j

0k is estimated by the sample variance
s2
Mk ¼

1

J � 1

XJ

j¼1

~pm;j
0k � �pm

0k

� �2
; ð17Þ
where the pooled estimate is given by �pm
0k ¼ 1

J

PJ
j¼1~p

m;j
0k . The error �Mk in �pm

0k is normally distributed by the cen-
tral limit theorem, N ð0; r2

Mk=JÞ. If r2
W is the variance of Wj, then r2

Mk is r2
W=
eM and the variance of �pm

0k is
r2

W=ðJ eM Þ ¼ r2
W=M . An approximate 95% confidence interval for �Mk is given by the Student t-distribution [18]
j�Mkj 6 2sMk=
ffiffiffi
J
p

: ð18Þ
4.2. Error in the expected values

Suppose that the PDF in (16) is known by its exact value. The sum is the expected value of x at time t with
the parameter /. In an MC method, the sum is computed at tm by determining trial vectors xk with uniformly
distributed components. Let the sum of the ith component at tm be evaluated Q times using K trial vectors each
time
Sqi ¼
f
K

XK

k¼1

xiðxm
Kðq�1Þþk;/

m; tmÞp0ðxm
Kðq�1Þþk; t

mÞ; q ¼ 1; . . . ;Q: ð19Þ
Usually, Q is much smaller than K. The pooled estimate of E[x(X,/, t)] is
Si ¼
1

Q

XQ

q¼1

Sqi: ð20Þ
It approximates the expected value with the error �Ki. The sample variance s2
i of Sqi is
s2
i ¼

1

Q� 1

XQ

q¼1

ðSqi � SiÞ2: ð21Þ
It follows again from the central limit theorem that the error in Si with probability 0.95 is bounded by
j�Kij 6 2si=
ffiffiffiffi
Q

p
: ð22Þ
The error �Ki is normally distributed, N ð0; r2
Ki=QÞ, where r2

Ki is the variance of Sqi. According to the central
limit theorem, rKi decays as K�1/2 when K increases. Consequently, the bound on �Ki is proportional to
1=

ffiffiffiffiffiffiffi
KQ
p

.
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The error in the QMC method is estimated by scrambling the sequences as in [22,33]. The digits of a quasi-
random number in a base are permuted randomly to obtain the scrambled number. The advantage with
scrambling is that the rapid convergence of QMC is preserved while allowing for error estimates as in MC.
The sum Sqi is computed as in (19). The error estimate is given by (22). Since rKi � K�1, the right hand side
in (22) decreases as 1=ðK

ffiffiffiffi
Q
p
Þ for increasing K and Q and a moderate m.

4.3. The total summation error

With xm
k ¼ xðxm

k;/
m; tmÞ; we derive the total error in the summation from (16)
E½xðX0;/; tmÞ� ¼
f
K

XK

k¼1

xm
kp0ðxm

k; t
mÞ þ �K ¼

f
K

XK

k¼1

xm
k�p

m
0k þ

f
K

XK

k¼1

xm
kðp0ðxm

k; t
mÞ � �pm

0kÞ þ �K : ð23Þ
The second sum on the right hand side is a sum of independent and normally distributed variables
�Mk ¼ p0ðxm

k; t
mÞ � �pm

0k. The difference �mi between the expected value and the sum S is in the ith component
�mi ¼ E½xiðX0;/; tmÞ� � Si ¼ �Ki þ
f
K

XK

k¼1

xm
ki�Mk: ð24Þ
It follows from Section 4.1 that the sum Ri in (24) has the distribution
Ri � N 0;
f
K

� �2XK

k¼1

ðxm
kiÞ

2 r2
Mk

J

 !
:

If rMk 6 rM for all k, then the variance of Ri is bounded by
VarðRiÞ 6
f
K

r2
M

J
f
K

XK

k¼1

xm
ki

� �2
: ð25Þ
By (24), Section 4.2, (25), and the bound rKi 6 rK, i = 1, . . . ,n, the total summation error �mi is normally dis-
tributed with zero mean value and a variance that is bounded by
Varð�mi Þ 6
r2

K

Q
þ f

K
r2

M

J
f
K

XK

k¼1

ðxm
kiÞ

2
; i ¼ 1; . . . ; n: ð26Þ
The variance r2
K and the upper bound r2

M in (26) are estimated by the sample variances in (17) and (21). Since
r2

K decays with increasing K and r2
M with increasing M, Varð�mi Þ can be made as small as we wish by choosing K

and M sufficiently large.

4.4. The integration error

The evaluation of F in (13) is perturbed by the error �k+1 caused by the summation. It is equal to �m in (24),
where tm is the time for the most advanced trajectory in time in the SSA but still tm 6 tk+1. The discretization
error in the approximation of the time derivative is denoted by sk+1. Following [19] and [29], the local error in
the corrector solution /k+1 of (13) is
/ðtkþ1Þ � /kþ1 ¼ a�1
0 Dtkðskþ1

c � �kþ1Þ;

skþ1
c ¼ � 1þ hk

6hk ðDtkÞ2/000 þOððDtÞ3Þ;
ð27Þ
where Dt = max(Dtk,Dtk�1). The local error in the predictor /̂kþ1 from (14) is
/ðtkþ1Þ � /̂kþ1 ¼ â�1
0 Dtkðskþ1

p � �kÞ;

skþ1
p ¼ 1

6hk ðDtkÞ2/000 þOððDtÞ3Þ:
ð28Þ
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The error equation approximately satisfied by the global error e in the corrector is
de

dt
� oF

o/
e ¼ sc � �: ð29Þ
The aim is to control the driving right hand side in (29) by taking Dtk sufficiently small and K and M suffi-
ciently large.

The leading term in the temporal discretization error skþ1
c is computed by first combining (27) and (28) and

then obtaining an estimate of /000(tk+1). This estimate is inserted into skþ1
c in (27) to arrive at an expression for

the jth entry
skþ1
cj � �kþ1

j ¼ � 1þ 2hk

2þ 3hk

/kþ1
j � /̂kþ1

j

Dtk
þ ð1þ hkÞ�k

j þ �kþ1
j

 !
þOðDt3Þ: ð30Þ
Let the variance of �l
j be denoted by r2

� . Since �l
j is normally distributed with mean 0, N ð0; r2

� Þ, (see Section 4.3)
and independent of �‘j; ‘ 6¼ l, the leading term in (30) is
N � 1þ 2hk

2þ 3hk

/kþ1
j � /̂kþ1

j

Dtk
;

1þ 2hk

2þ 3hk

� �2

ðð1þ hkÞ2 þ 1Þr2
�

 !
: ð31Þ
The first term in (30) depends on Dt2 but the second and third terms are independent of Dt. Suppose that we
want the error in the right hand side of (29) to be less than gj for all components j with a 95% confidence inter-
val. Choose a fraction c, 0 < c < 1, a time step Dtk, K,Q,M, and J such that
/kþ1
j � /̂kþ1

j

Dtk

					
					 6 2þ 3hk

1þ 2hk cgj;

r� 6
r2

K

Q
þ f

K
r2

M

J
f
K

XK

k¼1

ðxm
kjÞ

2

 !1=2

6
2þ 3hk

1:96ð1þ 2hkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ hkÞ2

q ð1� cÞgj ð32Þ
for all j using (26). Then by (30) we have
jskþ1
cj � �kþ1

j j 6 gj ð33Þ
with probability 0.95. The variance r2
Ki and the bound rM are estimated by (21) and (17). The parameter c

determines the fraction of the bound on skþ1
cj � �kþ1

j to be satisfied by the first, deterministic term in the error.
The tolerance parameter gj is a function of the relative and absolute error tolerances
gj ¼ max RelTol �
d/kþ1

j

dt

					
					;AbsTol

 !
: ð34Þ
With constant time steps, hk = 1, the upper bounds in (32) are simplified to
/kþ1
j � /̂kþ1

j

Dtk

					
					 6 1:67cgj; r� 6 0:38ð1� cÞgj:
4.5. Computational work

Here we consider the complexity of the hybrid method, and discuss when use of the hybrid method will be
advantageous compared to SSA.

The work of SSA grows linearly with the number of reactions R for one trajectory. Suppose that the work
in SSA of the full system to determine M trajectories is cSSAR M and that the corresponding work for the
reduced system in the hybrid algorithm is chyb

SSAqM . Usually, chyb
SSA 6 cSSA because some stiffness in the full sys-

tem is removed by the partitioning.
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Assuming cSSA ¼ chyb
SSA, a speedup of order R/q of the SSA part is obtained when the system is reduced.

Often, reactions involving the variables taken in the deterministic subset are relatively fast due to large copy
numbers, and then chyb

SSA will be much smaller than cSSA and the potential speedup is large. The maximal pos-
sible gain given a hybrid splitting is
gmax ¼ RcSSA=qchyb
SSA ð35Þ
and is obtained if the overhead due to the deterministic part of the solver is negligible compared to the time
spent in SSA in the hybrid system. This maximal speedup can be estimated from one simulation of the full
system and one with the hybrid solver using few trajectories.

Let TSSA be the total time for SSA and Thyb the total time in the hybrid algorithm. If the fraction spent in
SSA in the hybrid algorithm is #, the speedup is
T SSA

T hyb

¼ #gmax: ð36Þ
If the splitting results in a large potential speedup, then SSA will not in general be the dominating part of
the hybrid algorithm. The overhead associated with the solution of the deterministic equations (7) is estimated
by considering the other major contributions to the algorithm. Assuming that a total of QK QMC vectors are
used in the evaluation of the sum, p0 has to be calculated at QK points. For the evaluation of p0, the trajectory
matrix T is first sorted according to rows using merge sort [6, p. 28] with a work of OðmM log MÞ. Obviously,
many rows of T will consist of equal vectors for M reasonably large. They are removed in the sorted list with a
work of OðmMÞ, giving a modified trajectory matrix T̂ with bM 6 M rows. One quadrature point is then found
in T̂ using binary search with work proportional to m log bM . In total, the work of evaluating the sum is
OðmM log MÞ þOðmQK log bM Þ. The evaluation of the full Jacobian J and F would need work of Oðn2QKÞ
and OðnQKÞ, respectively, and the solution of the system of linear equations in the Newton iterations costs
Oðn2Þ operations with a factorized J. Thanks to the sparsity of the Jacobian the work is typically much lower,
and for larger models an iterative method could be used. The dominant terms in the computational time in one
time step of the hybrid algorithm are
chyb
SSAqM þ c1mM log M þ c2mQK log bM : ð37Þ
In merge sort, we have c1 = 2. With Ns deterministic time steps, # in (36) can be estimated as
# � 1

1þ N s
2m log M

chyb
SSA

q
þ c2mQK log bM

chyb
SSA

qM

� � ð38Þ
For a given system, QK is chosen to achieve an acceptable summation error. For large values of QK and
small values of M, the term related to QMC summation will be large, and # small, i.e. speedups far from gmax

will be obtained. When M is increased with constant QK, this term will decrease and # increase until the con-
tribution from the summation term is small. The term associated with the sorting will increase slowly as logM,
and eventually # will decrease due to this term. With a large value of chyb

SSA it will be possible to keep # close to
1. On the other hand, the maximal speedup gmax will not be large. We will see a scenario when this is the case
in Section 5.2, and one example when gmax is large but # small, still resulting in a significant speedup in Section
5.3. Obviously, the fewer timesteps Ns taken in the macroscopic solver, the higher value of #, and the greater
the speedup. Fewer time steps are usually taken with an adaptive algorithm. As a last observation, note that
without summation with an MC or a QMC method, the work would grow exponentially with m.

5. Numerical results

The hybrid algorithm is applied to the simulation of three different chemical systems. The first system is
small with two metabolites and two enzymes and serves as an illustration of some of the limitations of the
hybrid method, but also develops guidelines for how to choose some of the parameters in the algorithm.
The second system models a molecular clock where the reaction rate equations fail to produce oscillations
for a certain parameter value. Introducing a few stochastic variables motivated by the simplification in [43]
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makes the model much more robust to changes in the parameter. This is an example where addition of sto-
chastic noise improves the original model based on the reaction rate equations. Here we show that the hybrid
method is able to capture this behavior. The third system is a mitogen-activated protein kinase (MAPK) sig-
naling cascade with 22 molecular species. Only three of these species are treated stochastically. The results
from the simulations with the full system and SSA and the reduced system and our algorithm are similar
but the computational work to simulate the reduced system with good accuracy is an order of magnitude
lower.

The most time consuming parts of the hybrid solver, i.e. SSA, evaluation of p0, QMC summation, and com-
putation of the Jacobian J, are implemented in C and wrapped as mex-files in a MATLAB environment. Different
systems are defined by one function that performs SSA on the reduced system, one function that returns the
right hand side of the differential–summation equations and one function that defines the sparsity pattern of
the Jacobian matrix. To facilitate the generation of different hybrid splittings, a graphical tool has been devel-
oped in Python that reads models in the SBML format [23] and after manual selection of the stochastic vari-
ables automatically generates the necessary C files given a desired partitioning. The reaction rate equations are
integrated by MATLAB’s ode15s. The code for generation of the quasi-sequence is written as a mex-file calling
a Fortran subroutine from [22]. This part is executed once initially and contributes little to the total CPU time
if the number of time steps is sufficiently large. Some parts of the algorithm can be run in parallel using open-
MP, to take advantage of the multicore capabilities of most modern computers. However, all the experiments
here have been run with a serial code on an Intel Core Duo MacBook with 2.0 GHz processors, 2MB L2 cache
and 2 GB RAM.

5.1. Metabolites controlled by enzymes

The first system is a simple generic model with two metabolites A and B and two enzymes EA and EB as in
[28]. The hybrid method does not outperform SSA for this system, as we will see, but the system is small and
the behavior of different parts of the algorithm is easily investigated. It will provide insight into some of the
limitations of the algorithm, but also give guidelines for how to choose some of the parameters.

The production of A and B is regulated by the enzymes. The reactions are
Table
The pa

ka

0.3
; !
kaeA
1þ a

Ki A ; !
kbeB
1þ b

Ki B

Aþ B !k2ab ;

A!la ; B!lb ;

; !
keA

1þ a
Kr EA; !

keB
1þ b

Kr EB

EA!
leA ; EB!

leB ;
The reaction constants above are given in Table 1.
There are no fast time scales for the reactions and simulation with SSA is easily conducted for this system,

so we would not expect the hybrid algorithm to result in a considerable speedup in this case. The first and
second central moments of the distribution, l and r2, are computed by simulation with SSA. Table 2 shows
the maximal value of r(t)/l(t) for the different species during 1000 s and Table 3 the correlation coefficients at
t = 1000 s using 105 trajectories.

The standard deviation relative to the mean value is neither very large nor very small.
1
rameters for the metabolite–enzyme model

kb k2 Ki l keA keB Kr

0.3 0.001 60 0.002 0.02 0.02 30



Table 2
The maximal value of r(t)/l(t) during the first 1000 s of simulation

A B EA EB

0.52 0.52 0.35 0.35

Table 3
The correlation coefficients at t = 1000 s

A B EA EB

A 1 �0.75 0.59 �0.34
B �0.75 1 �0.34 0.59
EA 0.59 �0.34 1 0.22
EB �0.34 0.59 0.22 1
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The system is partitioned so that the metabolites A and B are treated as stochastic variables and the
enzymes EA and EB are assumed to be normally distributed with a small variance. In this case, the number
of stochastic variables decreases from N = 4 in the full model to m = 2 and n = 2, the number of reactions
is reduced from nine to q = 5 in (8). The number of reactions with propensities depending on x, j, is seven
in (9).

The marginal probabilities for the metabolites and the enzymes calculated from M = 105 trajectories of
SSA are plotted in Fig. 1. The system is close to the steady state at t = 1000 s. The fluctuations of the species
A and B in (10) appear to be larger than for the enzymes in the figure, in agreement with the values in Table 2.
Fig. 2 shows the system simulated with the hybrid solver to the final time t = 1000 s. The time steps are chosen
adaptively with a relative tolerance of 0.01 and an absolute tolerance 10�4. The maximal time step Dtmax is 5.
The summation is performed by using Q = 10 scrambled sequences of K = 215 points. They are generated and
stored initially and then used to form estimates of the sum and the error as in (20) and (22). The maximal value
of the estimated leading terms of the error in (30) and r� in (32) are shown in Fig. 3. For this system, the error
tolerance with c = 0.5 was easily met, and the time step reached its maximal value after approximatively 55 s
and remained fixed for the rest of the simulation.

Clearly, the hybrid solver in Fig. 2 does not capture the characteristic shape of the marginal distribution of
A and B sufficiently well. At t = 1000 s, the correlation coefficient between the metabolites was �0.34. These
values are to be compared to Tables 2 and 3. We expect the hybrid algorithm to give inaccurate results in this
case, since the simplifying assumptions in the derivation of the underlying equations are violated. First of all,
the relative standard deviations of the species in the deterministic subset are not very small. Moreover, the
correlation between the species in the stochastic and deterministic subsets is significant. A good splitting
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Fig. 1. Isolines of the marginal probability density at t = 1000 for A and B (left) and EA and EB (right) computed by SSA with M = 105.
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ideally keeps highly correlated species within the stochastic subset. However, the distribution obtained with
this solver compares very well with the results in [28] where a Fokker–Planck equation approximates the mas-
ter equation.

Different summation techniques for (16) are evaluated in Fig. 4 with the PDF based on M = 105 realiza-
tions at t = 1000. The slope of the curves has been determined by a least squares fit to the data. The sums
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Fig. 4. The sample standard deviation for different MC and QMC strategies. The number in parenthesis is the inclination of the curve.
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Sq, q = 1, . . . ,Q, are computed for Q = 30. Then the sample or empirical standard deviation is determined
componentwise as in (21).

In Fig. 4, the first component of the sample standard deviation is displayed. Raw MC summation with
pseudorandom numbers is compared to raw QMC summation using numbers from the Faure sequence gen-
erated with the algorithm in [22]. The acceptance–rejection method (A–R) [3,18] and a smoothing alternative
[3,32] are tested. The discontinuity in the A–R method is replaced by a linear function between 0 and 1 in [32].
One important consideration is the fact that when for example the A–R method is used to generate numbers
from the distribution, fewer evaluation points will be accepted and used than in the raw MC method. This
means that K in (16) will be different for different methods. The errors reported in Fig. 4 refer to the error
obtained with a fixed number of trial points K because we are interested in which method gives the smallest
error per generated random number to account for the cost in generating the numbers and most of all in eval-
uating the PDF. The best convergence rate with the lowest error is achieved by standard QMC. This is the
preferred method in the sequel.

From (32) and Section 4.2 some conclusions can be drawn concerning how to choose K and Q. The bound
of r2

� in (32) consists of two terms, one corresponding to r2
K and the other to r2

M . Fig. 5 shows these terms
separately as computed during the simulation. In this case, the second term dominates.

The state space is quite small in this example. An upper bound on the second term r2
�2 in the error is
Table
Time s

Numb
Time s
Total
TSSA/T
r2
�2 ¼

f
K

r2
M

J
f
K

XK

k¼1

ðxm
kjÞ

2
6

f2r2
M

JK
max
x2X

xiðx;/; tÞ2: ð39Þ
If the reactions are fast, and the macroscopic equations are stiff, then xi can be large. To ensure that the r2
�2

term stays small it is advantageous to choose large values of K and M. The error in the QMC approximation
of the sum decreases as 1=ðK

ffiffiffiffi
Q
p
Þ. For a constant KQ the smallest error is obtained for Q = 1. The price when

Q = 1 is that no simple error estimation is available. The results of the other two simulations in Sections 5.2
and 5.3 are consistent with these conclusions.

The Matlab tool ‘Profiler’ has been invoked to determine the time spent in different parts of the algorithm.
First the hybrid solver with full error estimation is compared to SSA. The system was simulated to t = 1000 s
with fixed time step Dt = 1 s and ten QMC sequences of 215 � 33 · 103 points. The number of trajectories was
M = 105. In this setting, simulation with SSA took 296 s, while the hybrid algorithm required 1360 s simula-
tion time, i.e. SSA was about 4.6 times faster. This is explained by the small size of the system and no fast
scales are separated. Table 4 shows the performance when the system is simulated to t = 1000 s with adaptive
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Fig. 5. The first term involving r2
K (left) and the second term involving r2

M (right) in (32) with K = 215, M = 105.
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time step selection with a maximal time step of Dt = 5 s, using two QMC sequences of K = 216 � 65 · 103

points and no summation error estimation.
In this case, the hybrid algorithm is as fast as SSA for the full system.

5.2. Circadian rhythm model

The oscillator in [1,43] is a model for circadian rhythms. This kind of control system assures that periodic
oscillations of certain molecular species appear in order to establish a circadian rhythm in the organism.

The model has nine variables. Two genes, Da and Dr and their corresponding mRNA, Ma and Mr, are con-
trolled by an activator and a repressor A and R, synthesized from the respective mRNA. The activator and
repressor can associate and form a complex C, in which the activator A is degraded. The variables D0a and
D0r are the genes Da and Dr with a bound activator. In the model it is assumed that there is only one gene cod-
ing for the repressor and the activator. Thus Da þ D0a ¼ 1, and the same holds true for the repressor gene. In
the numerical simulations, the problem is scaled by setting the initial conditions for the genes to
Da = Dr = 0.2. The 18 reactions for the nine molecular species are
Table
Param

aA

50.0

da

1.0

Fig.
D0a !
haD0a Da

Da þ A !caDaA
D0a

D0r !
hrD0r Dr

D0r þ A !crDrA
D0r

9>>>>>>=>>>>>>;
; !

a0aD0a Ma

; !aaDa Ma

Ma !
dmaMa ;

9>>=>>;
; !baMa

A

; !
haD0a A

; !hrDr 0A

A!daA ;
Aþ R !ccAR

C

9>>>>>>>>=>>>>>>>>;
; !a
0
rD0r Mr

; !arDr Mr

Mr !
dmrMr ;

9>>=>>;
; !brMr

R

R!drR ;
C!daC

R

9>>=>>; ð40Þ
The reaction constants are found in Table 5. For these parameters the system exhibits a limit cycle but if the
parameter dr is sufficiently small then the macroscopic reaction rate equations quickly reach a stable fixed
point and the oscillations stop, see Fig. 6. It is shown by Vilar et al in [43] that a mesoscopic description of
the system continues to produce reliable oscillations. The stochastic noise is obviously sufficient to perturb
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6. Time evolution of the repressor R computed with the reaction rate equations. The parameter dr is 0.2 (left) and 0.08 (right).
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the trajectories away from the fixed point to initiate new cycles. To be useful, the hybrid algorithm should
capture this behavior qualitatively. The parameter dr has two different values 0.2 and 0.08 in the numerical
experiments.

The partitioning is inspired by the discussion in [43]. In this type of control system, we expect a high cor-
relation between many of the species. Even if the species A and R have large copy numbers most of the time, at
critical time intervals they drop near zero. Here, the variables are partitioned into two subsets: A and R are
treated stochastically, corresponding to X in Section 2 with m = 2, while the other variables are treated deter-
ministically, corresponding to Y with n = 7, with gmax = 2.0. There are ten stochastic reactions (q = 10 in (8)).

The initial conditions for the deterministic variables are 0.2 for the genes, 10 for C and 0 for the other spe-
cies. The stochastic variables are initiated as normal distributions centered around 10. The hybrid system was
solved with adaptive time step selection with relative tolerance 0.05 and absolute tolerance 10�3. The proba-
bility density p0 is approximated with M = 106 trajectories in (10) and K = 220 � 1.05 · 106 quasi-random
points in (16) are used in each sequence in the integration algorithm and Q = 5.

Sustained oscillations are obtained with the hybrid algorithm for dr = 0.2 in Figs. 7 and 8. Fig. 8 also dis-
plays A and R from one trajectory determined by SSA for the full system. As can be seen, the solution with the
hybrid method has the same qualitative behavior.

Fig. 9 shows the time steps taken by the hybrid solver and the error term r�. Small time steps are needed in
regions where the solution changes rapidly (cf. Fig. 7). Recomputing time steps after a failure to satisfy the
error tolerance is necessary occasionally in this example. This incurs an extra cost when this oscillator is sim-
ulated with the hybrid algorithm. This is mostly due to the difficulty to satisfy the tolerance on r� in (32). In
fact, the tolerance was violated in a few time intervals, see Fig. 8 (right). This problem would likely be
ameliorated by using one longer QMC sequence and more trajectories M, according to the discussion in
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Fig. 7. Time evolution of the mRNA variables Ma and Mr (left) and the gene variables Da, D0a, Dr, and D0r (right) computed with the
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the previous section. On the other hand, sometimes a small time discretization error is not the highest priority
since the understanding of concepts is often the major goal rather than exact predictions.

The system was simulated with the hybrid solver when dr = 0.08. Time integration was done adaptively
with relative tolerance 0.05 and absolute tolerance 10�3. The PDF was approximated with M = 104 trajecto-
ries and summation performed with one QMC sequence of K = 218 � 2.62 · 105 points. Fig. 10 shows the
results from the simulation together with results from one trajectory of SSA for the full system. The solution
with the hybrid algorithm exhibits oscillations as the fully stochastic model does in contrast to simulation with
the reaction rate equations in Fig. 6.

The contribution of the SSA algorithm to the total time required to solve the system is studied in Table 6.
Here, the system was simulated with a fixed time step Dt = 0.5 and one QMC sequence with K = 218. For this
system, the stochastic simulations are more demanding than for the previous example in Section 5.1. The par-
titioning does not permit a substantial speedup and we expect the hybrid solver to approach gmax = 2 for a
large number of trajectories. Indeed, for M = 106 more than 95% of the CPU time of the hybrid method is
due to SSA.

The summation error of the QMC quadrature determined by (22) for this problem is displayed in Fig. 11.
The sum in (16) with p0 at t = 25 s is computed using the Faure sequences for different number of trajectories
M and different number of quadrature points K with Q = 30 in (21). The convergence rate and the negative
slope increase with increasing number of trajectories. This is explained by the fact that a larger M implies a
smoother p0 and a smaller error in the quadrature.
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Fig. 10. Time evolution of the expected values of the activator A and the repressor R computed with the hybrid method (left) and one
trajectory of SSA for the full system (right) when dr = 0.08.

Table 6
Time spent in SSA when the system was simulated with a fixed time step Dt = 0.5 to the final time 50 s and Q = 1, K = 218

Number of trajectories 104 105 106

Time spent in SSA [%] 67.2 92.8 95.8
TSSA/Thyb 1.33 1.84 1.93
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5.3. Signaling cascade

As a final example we will consider a model of a mitogen-activated protein kinase (MAPK) signaling cas-
cade [26,27]. These receptor mediated signal transduction pathways are conserved regulatory systems, and the
model consists of three sequentially acting kinases and their dephosphatases, phosphorylated forms of the
kinases and the intermediate complexes formed in the reactions. The model has 22 species participating in
30 reactions. The output signal is doubly phosphorylated MAKP (MAPKpp), responding to the input signal
kinase RAFK.

Suppose we are interested in the stochastic variation of the output signal MAPKpp, while the detailed sto-
chastic information concerning the other components is less important. This is a scenario where the hybrid
method will provide a significant speedup compared to the full SSA and more modeling accuracy than the
reaction rate equations. No reactions are much faster than the other ones due to the propensities. The system
is not too stiff for simulation with SSA, and a simulation with few trajectories gives an estimate of the vari-
ances of the species. The species, their initial values and the relative standard deviation at t = 500 s are found
in Table 7. The computational cost of this calculation is very small compared to an accurate simulation of the
system using 105–106 trajectories.

For modeling purposes, we define three categories based on the values of the relative standard deviation.
High variance species are taken to be those with relative standard deviation greater than 0.5. Species with
intermediate variance are those in the range 0.1–0.5 and low variance those with quotient smaller than 0.1.

To evaluate the performance of the hybrid method, the state space is divided so that the high variance spe-
cies (MAPKpp, MAPKpMEKpp and MAPKppMAPKPH) are treated as stochastic variables, X and m = 3
in Section 2, and the other compounds as deterministic variables, Y and n = 19. In this way, 30 reactions for 22
species are reduced to six reactions with a stochastic component, q = 6 in (8), and 24 differential–summation
equations, giving a maximal speedup gmax = 39.

Initially the kinases and the dephosphatases are present in higher copy numbers than the others. Simulation
with the reaction rate equations also shows that some other species relatively quickly reach higher levels. Reac-
tions involving these species will typically be responsible for most of the time spent in SSA. Hence, they are
candidates for macroscopic treatment. Obviously, simulations with higher initial conditions for these species
benefit more from the hybrid algorithm.

As a benchmark we use the expected values and standard deviation of MAPKpp at t = 500 s, computed by
SSA with 106 trajectories, yielding l = 0.908 and r = 0.983, or with a 95% confidence interval
l = 0.908 ± 0.002. Simulation with the reaction rate equations gives l = 0.86.

The results of simulations with this splitting for increasing number of trajectories are collected in Table 8.
One QMC sequence of 214 points was used for the summation. The differential–summation equations were



Table 7
The species divided sorted by the quotient r(500)/l(500) based on 1000 trajectories of SSA

Species Initial value r(500)/l(500)

RAFpRAFPH 0 0.02
MAPKPH 180 0.04
MEKPH 120 0.04
RAF 240 0.07
RAFK 60 0.08
MAPK 180 0.08
RAFp 0 0.11
MAPKMEKpp 0 0.16
MEK 120 0.19
MAPKpMAPKPH 0 0.20
RAFRAFK 0 0.21
MEKpMEKPH 0 0.21
MEKRAFp 0 0.21
RAFpRAFPH 0 0.22
MEKp 0 0.28
MAPKp 0 0.32
MEKpRAFp 0 0.34
MEKppMEKPH 0 0.35
MEKpp 0 0.48
MAPKppMAPKPH 0 0.70
MAPKpMEKpp 0 0.70
MAPKpp 0 1.08

Table 8
Speedup factors, standard deviation and expected value for MAPKpp computed with the hybrid algorithm

M 104 105 106

r 0.94 0.94 0.94
l 0.89 ± 0.02 0.875 ± 0.006 0.884 ± 0.002
TSSA/Thyb 6.6 13.03 11.83

The expected value l is reported with a 95% confidence interval.
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integrated adaptively with a relative tolerance 0.05 and an absolute tolerance 10�4 with a maximal time step of
0.5. The hybrid method produces results between the values computed with SSA for the full system and the
deterministic mean value. Also, we obtain a large speedup. However, here the factor decreases for the higher
values of M, see the discussion in Section 4.5.

The isolines for the marginal distribution of MAPKpp and MAPKpMEKpp using SSA for the full system
and the hybrid solution are compared in Fig. 12, and the probability distribution of MAPKpp is found in
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Fig. 12. Isolines of the marginal probability distribution for MAPKpp and MAPKpMEKpp with SSA (left) and the hybrid method
(right).
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Fig. 13. In both cases, the results were computed using M = 106 trajectories. It is evident in the figures that the
hybrid solver is able to capture the stochastic properties of the activated MAPK species.

This system is still fairly small. For example, the same model extended to include scaffolds [27] has 89 vari-
ables participating in 300 chemical reactions. For a system of this size, if a good separation of the variables can
be chosen, then the hybrid solver is superior compared to SSA.
6. Conclusions

We have shown that the proposed hybrid method is able to capture important features of the fully meso-
scopic models, while keeping the number of stochastically treated variables at a manageable level.

For one of the model systems considered, the reactions are too few and the splitting is done in such a way
that an improvement in execution time over the full SSA algorithm cannot be obtained. However, for systems
where the partitioning results in a sufficient reduction of the number of reactions and/or an elimination of fast
scales from SSA, a considerable speedup compared to a fully stochastic simulation is reached. Also, the hybrid
method can be viewed upon as a way of improving the macroscopic model by introducing stochasticity in
some components. With this viewpoint, the hybrid solver is more computationally demanding than the
ODE models, but gives more realistic results at a comparatively low additional cost.

The major bottleneck in the time stepping scheme of the hybrid solver is, apart from the SSA simulation,
the evaluation of the probability distribution function p0(x, t). The number of evaluation points is determined
by the performance of the summation algorithm. It is therefore crucial to choose a scheme that gives a small
error with few evaluated quadrature points. Here, the sum is computed with a Quasi-Monte Carlo method.

The partitioning of the systems based on the variance of the species is often more intuitive than e.g. on fast
and slow reactions. The first and second moments are estimated in the last example providing a splitting of the
system in a low-dimensional stochastic part and many macroscopic variables. The computing time is reduced
by an order of magnitude.
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